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Upward synaptic scaling is dependent on
neurotransmission rather than spiking
Ming-fai Fong1,2,3, Jonathan P. Newman2,3, Steve M. Potter2 & Peter Wenner1

Homeostatic plasticity encompasses a set of mechanisms that are thought to stabilize firing

rates in neural circuits. The most widely studied form of homeostatic plasticity is upward

synaptic scaling (upscaling), characterized by a multiplicative increase in the strength of

excitatory synaptic inputs to a neuron as a compensatory response to chronic reductions in

firing rate. While reduced spiking is thought to trigger upscaling, an alternative possibility is

that reduced glutamatergic transmission generates this plasticity directly. However, spiking

and neurotransmission are tightly coupled, so it has been difficult to determine their inde-

pendent roles in the scaling process. Here we combined chronic multielectrode recording,

closed-loop optogenetic stimulation, and pharmacology to show that reduced glutamatergic

transmission directly triggers cell-wide synaptic upscaling. This work highlights the impor-

tance of synaptic activity in initiating signalling cascades that mediate upscaling. Moreover,

our findings challenge the prevailing view that upscaling functions to homeostatically stabilize

firing rates.
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N
eural networks need to maintain specific levels and
patterns of spiking activity in order to function properly.
As aberrant activity patterns often develop following

neural injury and disease, it is important to identify the triggers
and mechanisms of plasticity that influence neural excitability1–7.
Homeostatic plasticity encompasses a set of mechanisms that
act to maintain appropriate levels of spiking activity8,9. The most
commonly studied form of homeostatic plasticity is AMPAergic
(a-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) syn-
aptic upscaling, a cell-wide multiplicative increase in the
quantal amplitudes of spontaneous AMPAergic currents
following chronic reductions in firing rate10,11.

The prevailing view is that upscaling is directly triggered by
reductions in firing rate because multiplicative increases in
AMPAergic quantal amplitude are observed following chronic
blockade of voltage-gated sodium channels11–13. However,
upscaling is also observed following chronic blockade of AMPA
receptors (AMPARs)11,14,15, leaving open the possibility that
reduced AMPAergic transmission itself, rather than reduced
spiking, could directly trigger upscaling. This possibility has been
difficult to test because spiking and AMPAergic transmission are
highly coupled processes.

A few studies have circumvented this difficulty by manipulating
spiking activity in individual neurons while leaving neurotransmis-
sion largely intact. One study blocked voltage-gated sodium
channels at the soma, which lead to an accumulation of AMPARs,
consistent with upscaling being triggered by reduced spiking16. Two
other studies chronically hyperpolarized individual neurons by
overexpressing a potassium channel; this reduction in spiking did
not trigger upscaling12,17. Therefore, it remains unclear whether a
reduction in spiking is sufficient to trigger upscaling without a
concomitant reduction in neurotransmission. If reduced spiking can
directly trigger scaling, this would provide an elegant mechanism
for tuning overall neuronal excitability without disrupting the
relative distribution of synaptic strengths imposed by Hebbian
mechanisms18,19. Conversely, if reduced neurotransmission triggers
scaling, this would suggest that scaling may be similar to a local
form of homeostatic plasticity that acts to stabilize the strength of
individual synapses in response to altered synaptic activity20–23. On
the basis of the conflicting evidence from studies that have reduced
activity in single cells, it has been difficult to deduce the trigger for
scaling and its functional significance within a neural circuit.

In the current study, we determine the distinct roles of spiking
and neurotransmission as triggers for upscaling by independently
manipulating both AMPAergic transmission and spiking activity
at the network level. First, we use microelectrode array (MEA)
recordings to continuously monitor spiking activity, and show
that reductions in spiking do not correlate with the magnitude of
upscaling. Next, we show that chronically blocking AMPARs is
sufficient to trigger upscaling even when firing rates are clamped
to normal levels for the duration of receptor blockade using
closed-loop optogenetic control. Finally, we show that scaling
induced by blocking spikes is attenuated when we enhance
quantal AMPAergic currents. Together, these experiments
suggest that cell-wide upscaling is directly triggered by reduced
AMPAergic transmission, and not reduced spiking. Our findings
challenge the prevailing view that upscaling acts to home-
ostatically maintain firing rate and suggests that the signalling
pathways that mediate scaling are tied to synaptic activity.

Results
Spiking persists during chronic AMPAergic blockade. We
sought to examine the nature of spiking activity in a developing
neural network, and to assess how this activity is altered during
perturbations that trigger synaptic scaling. To this end, we used

planar MEAs to record extracellular spiking activity from hun-
dreds of neurons embedded in dissociated cortical cultures of
neurons and glia during their second week in vitro (Fig. 1a–c).
For each culture, the overall firing rate was assessed by summing
the spikes recorded across all MEA electrodes, and dividing by the
elapsed time interval24. Consistent with previous work24–26,
MEA recordings showed that spikes occurred primarily during
network-wide population bursts (hereafter referred to as bursts);
however, low levels of asynchronous spiking were also observed
during the interburst interval (Fig. 1d).
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Figure 1 | Overview of microelectrode array recordings for monitoring

spiking activity. (a) Confocal micrograph of dissociated cortical culture

containing neurons (MAP2) and astrocytes (GFAP). Scale bar, 50mm. (b)

Phase-contrast micrograph of dissociated cortical culture grown on a planar

MEA. Scale bar, 500mm. (c) Extracellular spike waveforms recorded on

each microelectrode shown in b. For each electrode, colours denote

different sorted units. Scale bars, 2 ms, 100 mV. (d) Top, rastergram of spike

times occurring during a network-wide burst, typical of dissociated cortical

cultures. Scale bar, 200 ms. Middle, rastergram showing multiple bursts

over several minutes. Bottom, time histogram of spikes occurring across

the entire MEA over the same time course shown in middle panel.

MEA-wide firing rate represents the number of spikes occurring in each bin.

Bin size, 1 s.
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We next examined how a 24-h blockade of either voltage-gated
sodium channels or AMPA/kainate receptors modulated spiking
and bursting activity. Both perturbations are thought to trigger
upscaling by reducing spiking activity. Consistent with our
expectations, the voltage-gated sodium channel blocker tetrodo-
toxin (TTX) eliminated spiking activity for the entire 24-h
treatment (Fig. 2a,b). In contrast, the AMPA/kainate receptor
antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) only
partially reduced spiking activity compared with pre-drug
levels15,27,28 (Fig. 2a,b). The CNQX-induced reduction in the
firing rate was primarily due to a reduction in burst frequency,
while spiking during the interburst interval was not significantly
affected (Fig. 2c). Spiking and bursting were reduced during the
first few hours of the CNQX treatment, but typically began to
recover by the end of 24 h (Fig. 2a,b). This recovery was highly
variable across cultures (Fig. 2b, Supplementary Fig. 1a–d), and
was likely facilitated by NMDAergic (N-methyl-D-aspartate)
transmission27,29 (Supplementary Fig. 2). Notably, any recovery
could not have been caused by AMPAergic upscaling since
AMPARs were blocked by CNQX. While the CNQX-induced
reduction in spiking was variable, some degree of spiking and
bursting always persisted, unlike cultures treated with TTX. The
distinct effects of TTX and CNQX on spiking activity suggest that
they could also have different effects on activity-dependent
processes such as synaptic scaling.

Changes in spiking and synaptic strength not correlated. We
hypothesized that cultures experiencing greater reductions in the
spiking activity would also experience more dramatic upscaling of
quantal amplitude. To test this hypothesis, we used whole-cell
voltage clamp recordings to measure miniature excitatory
postsynaptic currents (mEPSCs) from pyramidal cells following
24-h application of TTX or CNQX (Fig. 3a,b). Consistent
with previous studies11,15, chronic TTX or CNQX treatment
produced similar increases in mEPSC amplitude compared
with vehicle-treated sister control cultures (Fig. 3b,c,f; TTX,

146.8±8.0% of control; CNQX, 142.9±4.5% of control) without
changes in mEPSC frequency (Supplementary Fig. 3). Further, the
distributions of mEPSC amplitudes scaled multiplicatively
(Fig. 3d,e,g,h, Supplementary Fig. 3). Surprisingly, cells from
CNQX-treated cultures, which exhibited only moderate
reductions in spiking, scaled equally to cells in TTX-treated
cultures that exhibited complete elimination of spiking.

To quantify the relationship between spiking and scaling, we
compared changes in spiking and mEPSC amplitude for
individual sister culture pairs. For each culture, we compared
the reduction in MEA-recorded firing rate during the 24-h TTX or
CNQX treatment to the increase in the mean mEPSC amplitude
recorded following the treatment (Fig. 3i). While all TTX- and
CNQX-treated cultures exhibited reduced firing rates and
increases in average mEPSC amplitude, we observed no correla-
tion between the magnitude of the reduction in firing rate and the
resultant increase in mEPSC amplitude. In addition, there was no
correlation between the increase in the mEPSC amplitude and
burst rate or interburst firing rate (Fig. 3i). Moreover, there was no
relationship between changes in the mEPSC amplitude and firing
rate during the first few hours after TTX or CNQX treatment
(Supplementary Fig. 1e). Overall, the lack of correlation between
spiking activity and scaling demonstrates that the degree of
upscaling cannot be fully explained by changes in spiking activity.

There are several reasons why upscaling might be poorly
correlated with changes in spiking activity. It is possible that any
reduction in spiking beyond a certain threshold triggers the
maximal scaling response. For instance, the rate of insertion of
AMPARs that mediates the expression of scaling might saturate,
such that further increases in quantal amplitude are not possible
during the 24-h treatment period. Alternatively, it is possible that
postsynaptic spiking itself does not directly trigger the scaling
process and that reductions in AMPAergic transmission might
instead directly trigger upscaling.

Blockade of AMPAergic transmission using CNQX reduces
excitatory synaptic input to cells, and thus decreases postsynaptic
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Figure 2 | Spiking and bursting persist during AMPAergic transmission blockade. (a) MEA-wide firing rate histograms from example recordings before

and during application of TTX (1 mM) or CNQX (40mM). Bin size, 1 s. (b) The mean MEA-wide firing rate over time for different conditions (vehicle-treated

controls, n¼ 12 cultures; TTX, n¼ 8 cultures; CNQX, n¼ 13 cultures). Values are normalized to the firing rate during the 3-h window before drug/vehicle

application. Bin size, 3 h. Error bars, s.d. (c) The mean MEA-wide firing rate (control, 97.3±4.6%; TTX, 1.1±0.5%; CNQX, 46.2±4.1%; Po10� 6),

burst rate (control, 105.8±10.0%; TTX, 0%; CNQX, 31.2±4.8%; Po10� 6) and interburst firing rate (control, 108.1±12.7%; TTX, 3.6±1.5%; CNQX,

77.4±16.8%; Po10�4) over the entire 24-h treatment window, normalized to pre-drug values. Nonsignificant differences denoted by n.s. Significant

differences denoted by *Po10� 3, **Po10�4. Error bars, s.e.m.
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spiking. Conversely, blockade of spiking using TTX eliminates evoked
neurotransmitter release, and thus reduces the amount of glutamate
that can activate AMPARs. As TTX and CNQX each reduces spiking
and AMPAergic transmission either directly or indirectly, identifying
their independent effects on the scaling process has proven

challenging. To address this, we developed two strategies for
examining how chronic reductions in spiking or neurotransmission
independently affect synaptic scaling. First, we blocked AMPAergic
transmission while maintaining normal spiking activity. Second, we
blocked spiking while partially restoring AMPAR activation.
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Figure 3 | Reductions in spiking are not correlated to the magnitude of synaptic scaling. (a) Pyramidal cell during whole-cell recording. Scale bar, 50mm.

(b) Left, sample mEPSC recordings following 24-h treatment with vehicle, TTX (1 mM) or CNQX (40mM). Scale bars, 25 pA, 200 ms. Right, average mEPSC

waveforms. Scale bars, 5 pA, 20 ms. (c) The mean mEPSC amplitude from six sister culture pairs (control: 12.8±0.4 pA, n¼47 cells; TTX: 18.8±1.0 pA,

n¼ 58 cells; Po10� 5). Error bars, s.e.m. (d) Cumulative distribution of mEPSC amplitudes following TTX or vehicle treatment. The multiplicatively scaled

TTX distribution matches control (see Supplementary Fig. 3, P40.6). (e) Ranked TTX mEPSC amplitudes plotted against ranked control amplitudes (linear

fit, R2¼0.975). Dotted line denotes the line of identity. (f) The mean mEPSC amplitude for 10 sister culture pairs (control: 12.1±0.3 pA, n¼ 89 cells;

CNQX, 17.3±0.5 pA, n¼ 94 cells; Po10� 12). (g) Cumulative distribution of mEPSC amplitudes following CNQX or vehicle treatment. The multiplicatively

scaled CNQX distribution matches control (see Supplementary Fig. 3, P40.9). (h) Ranked CNQX mEPSC amplitudes plotted against ranked control

amplitudes (linear fit, R2¼0.996). Dotted line denotes line of identity. (i) Left, the mean mEPSC amplitude for individual cultures plotted against the

average firing rate they exhibited during the 24-h TTX or CNQX treatment. mEPSC amplitudes are normalized to corresponding sister control cultures, and

MEA-recorded activity is normalized to pre-drug levels (linear fit, r¼ �0.047). Centre and right, the mean mEPSC amplitude plotted against burst rate and

interburst firing rate, respectively (linear fits: burst rate, r¼ �0.114, interburst firing rate, r¼0.044).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7339

4 NATURE COMMUNICATIONS | 6:6339 | DOI: 10.1038/ncomms7339 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Optogenetic feedback restores spiking during AMPAR block.
In order to examine the effects of reducing AMPAergic trans-
mission independent of spiking, we developed a closed-loop
optical stimulation system for restoring normal levels of spiking
activity during chronic CNQX treatment. We used an ade-
noassociated virus to infect cells with the channelrhodopsin-2
gene (ChR2; H134R mutant30) in cultured neurons, and observed
expression throughout the culture within a week (Fig. 4a). To
deliver optical stimuli, we used a custom light-emitting diode
(LED) stimulator (see Methods). Blue light (465 nm) was passed
through a randomized fibre bundle and fed to a custom optical
train, providing uniformly distributed illumination in the plane of
the culture (Fig. 5, left; 10.1 mW mm� 2).

Because the reductions in firing rate that accompany CNQX
application were primarily because of reductions in network-wide
bursts (Fig. 2c), we used a stimulation strategy that reinstated
bursts. A 10-ms pulse of blue light reliably evoked short-latency
spikes that resulted directly from ChR2 activation, followed by a

longer latency barrage of action potentials. These longer latency
barrages of spikes, which occurred tens to hundreds of milliseconds
after the blue light pulse terminated, closely resembled sponta-
neously occurring bursts in terms of time course and profile of
network recruitment (Fig. 4b–d; Supplementary Figs 4,5). We
suspect that these bursts are dependent on NMDAergic transmis-
sion, since they could not be reproduced during NMDA receptor
blockade (Supplementary Fig. 6).

Previous work suggests that reductions in somatic calcium
influx are critical to the upscaling process16. Therefore, we
measured somatic calcium transients that occurred during
spontaneous bursts using the calcium-sensitive indicator Rhod-
3 (see Methods), and compared these with calcium transients that
occurred during optically evoked bursts in the presence of CNQX.
Under both conditions, the vast majority of somatic calcium
transients were time-locked to MEA-recorded bursts (Fig. 4e,f)
and occurred across the Rhod3-labelled neuronal population
(Supplementary Movie 1). In addition, the profile of calcium
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Figure 4 | Optogenetic stimulation recreates spontaneous-like bursting during AMPAergic transmission blockade. (a) Confocal micrograph of neurons

in a cortical culture expressing ChR2-eYFP. Microelectrodes are circled in white. Scale bars, 200mm (left), 50mm (right). (b) Left, voltage traces recorded from a

single microelectrode during a spontaneous burst (top) and a photostimulation-evoked burst following the addition of CNQX (40mM, bottom). The blue arrow

denotes the timing of the light pulse stimulation and the blue rectangle indicates the pulse duration (10 ms). The rastergrams (coloured vertical bars) below

each voltage trace denote the spike times of three different extracellular units captured on the electrode. Right, expanded voltage traces showing all spikes

detected during burst (separate units displayed in different colours). Scale bars, 50mV, 200 ms (left); 25mV, 1 ms (right). (c) Rastergrams showing spike times

recorded across all electrodes during a spontaneous burst (top) and an optically evoked burst after the addition of CNQX (middle). The recruitment of spikes

across the MEA is similar between the two conditions. Blue arrow denotes the timing of the light pulse. An expanded rastergram shows spikes occurring at burst

onset (bottom) and blue shading denotes when light is on. Scale bars, 100 ms (top and middle), 5 ms (bottom). (d) MEA-wide firing rate computed during
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burst, and an optically evoked burst in the presence of CNQX. All traces were taken from the same culture. Fast calcium transient immediately follows the 10-ms

pulse of blue light stimulation (direct illumination through filters, not dependent on calcium indicator). Scale bars, 2 s, 40% DF/F. (f) Rastergrams showing spike

times for all MEA electrodes recorded concurrently with calcium transients shown in e. Scale bar, 2 s.
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influx during optically evoked bursts in the presence of CNQX
resembled that of spontaneously occurring bursts (Fig. 4e,f,
Supplementary Fig. 7, Supplementary Movie 1). Together, the
results suggest that our blue light stimulus could reliably produce
bursts during AMPAergic blockade that were similar to
spontaneous bursts, both in spike timing and in somatic
calcium entry.

To achieve precise control of the MEA-wide firing rate, we
delivered optical stimulation in real-time based on spiking activity
recorded through the MEA31. The MEA-wide firing rate was
calculated every 10 ms, and a brief pulse (10 ms) of blue light was
delivered if the integrated error between the target and measured
firing rate became positive (Fig. 5, methods). In order to restore
normal levels of spiking during an AMPAR blockade, we treated
cultures with CNQX and began closed-loop optical stimulation
with a target spiking level set to the pre-drug firing rate (Fig. 6a).
Closed-loop optical stimulation effectively restored the pre-drug
firing rate throughout CNQX application (Fig. 6b) while
preserving spiking correlations between electrodes (Supple-
mentary Fig. 5). Further, our controller effectively restored
burst rate (Fig. 6c) and burst shape (Supplementary Fig. 4).

Reduced spiking is not required to trigger upward scaling.
Having reinstated the pre-drug firing rate during AMPAergic
transmission blockade (Fig. 6), we next examined whether
this restored spiking activity would prevent upward synaptic
scaling. To this end, we recorded mEPSCs from triplicate sister
cultures: [1] vehicle-treated control cultures experiencing normal
AMPAergic transmission and normal spiking activity, [2] CNQX-
treated cultures experiencing no AMPAergic transmission and
reduced spiking and [3] photostimulated CNQX-treated cultures
experiencing no AMPAergic transmission but restored spiking
activity (Fig. 7a). In line with previous observations11,14,15

(Fig. 3), mEPSC amplitudes from CNQX-treated cultures
exhibiting reduced spiking were scaled up as compared with
sister control cultures (Fig. 7, Supplementary Fig. 3a).
Interestingly, mEPSC amplitudes from CNQX-treated cultures
with restored spiking also scaled up (Fig. 7, Supplementary

Fig. 3a), and the mean mEPSC frequency was increased over
control values (Po10� 2; Supplementary Fig. 3b). The
distributions of mEPSC amplitudes from CNQX-treated
cultures experiencing restored versus reduced activity were
statistically indistinguishable (Fig. 7c,d; P40.9). These results
demonstrate that reductions in spiking are not required to trigger
upward synaptic scaling. Instead, reduced AMPAergic
transmission can directly and independently trigger upscaling
when spiking and the associated somatic calcium transients are
restored.

Reduced AMPAR activation triggers upward synaptic scaling.
Because reduced AMPAergic transmission can directly trigger
upscaling, we hypothesized that chronic blockade of the spiking
activity (TTX application) leads to upscaling by preventing spike-
dependent release of neurotransmitter and consequent reductions
in AMPAergic transmission. Alternatively, it is possible that
either a reduction in spiking or a reduction in AMPAergic
transmission could independently trigger scaling.

To test the importance of reduced AMPAergic transmission on
TTX-induced synaptic scaling, we sought to enhance the quantal
AMPAergic currents that remained during a spike blockade.
AMPARs mediate fast glutamatergic transmission and desensitize
quickly after binding glutamate. In order to enhance AMPAergic
mEPSCs we used cyclothiazide (CTZ), an AMPAR modulator
known to increase receptor open time32, as well as spontaneous
presynaptic release33. In the presence of TTX, the amplitude and
frequency of AMPAergic mEPSCs was significantly increased
when CTZ was added (Fig. 8a,b), and this effect persisted for at
least 11 h of drug application (Supplementary Fig. 8).

We also characterized how somatic calcium transients were
affected by TTX alone versus TTX and CTZ treatments. Whereas
untreated cultures exhibited synchronous somatic calcium
transients across many neurons during spontaneous MEA-
recorded bursts, synchronous transients were eliminated in the
presence of TTX, regardless of whether CTZ was also present
(Supplementary Fig. 9). Instead, there were smaller asynchronous
calcium transients observed in TTX-treated cultures, which did
not co-localize with the somata of bursting neurons. These
asynchronous transients became more prominent when quantal
AMPAergic currents were enhanced with CTZ (Supplementary
Movie 2; 31 active regions in TTX and 93 active regions in
TTXþCTZ across five cultures observed for 3 min in each
condition). The small asynchronous calcium transients could be
occurring in dendrites or in glia, as both dendritic processes and
astrocytes were dense throughout our cultures (Fig. 1a).

In order to test how partially restoring AMPAergic transmis-
sion affected TTX-induced scaling, we treated sister cultures with
either TTX alone, TTX and CTZ, or vehicle. As with previous
experiments, we recorded spiking activity using a MEA during
the 24-h treatment period and recorded mEPSCs from triplicate
sister cultures after washing out the drugs. Similar to TTX
treatment, co-treatment with TTX and CTZ completely abolished
spiking and bursting activity (Supplementary Fig. 10). mEPSC
amplitudes from cultures co-treated with TTX and CTZ were
significantly reduced compared with sister cultures treated with
TTX alone (Fig. 8c,d). On the other hand, mEPSC amplitudes
from cultures co-treated with TTX and CTZ were significantly
increased compared with vehicle-treated controls. This inter-
mediate increase in synaptic strength is likely because CTZ only
increased quantal currents and did not fully restore normal
postsynaptic currents observed in control cultures with intact
spiking (Fig. 8a, top trace). A multiplicative relationship between
mEPSC amplitude distributions existed for all three conditions
(Fig. 8e,f, Supplementary Fig. 3a), indicating that the increases
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in synaptic strength were consistent with synaptic scaling.
These results show that partially restoring AMPAR activation
during spike blockade can significantly attenuate TTX-
induced synaptic scaling. This demonstrates that reductions in
AMPAergic transmission are critical for triggering TTX-induced
upscaling, and suggests that this form of scaling is similar to that
observed following chronic CNQX treatment. Together, our
results provide strong evidence that reductions in AMPAR
activation in cortical networks trigger compensatory increases in
synaptic strength.

Discussion
The induction of cell-wide homeostatic synaptic scaling is
thought to be caused by chronic changes in the firing rate. Our
study challenges this basic idea and suggests an alternative trigger
for synaptic upscaling. First, we found that reductions in spiking
activity were not correlated with the magnitude of upscaling. We
then showed that reductions in AMPAR activation alone were
sufficient to elicit upward synaptic scaling. Lastly, we found that
increasing AMPAR activation during spike blockade attenuated

upscaling. These findings challenge several well-known computa-
tional and experimental models of synaptic scaling and have
important implications for compensatory plasticity in the context
of learning, memory, development and disease.

Synaptic scaling rules were originally proposed as a mathema-
tically tractable mechanism to curb the unbounded synaptic
strengthening or weakening predicted by models of Hebbian
learning18,19,34,35. Since then, there has been a wealth of evidence
in support of both upward and downward scaling across a range
of experimental contexts8,36. While previous studies hypothesized
that scaling could be triggered by changes in the firing rate, the
dependence of scaling on spiking appears to be more nuanced.

The prevailing model of upscaling suggests that chronic
reductions in the frequency of somatic action potentials lead
to reduced calcium influx, which then triggers upscaling of
AMPAergic currents10,16. However, this model is not compatible
with our results. Rather, we found that there was a poor
correlation between reductions in the firing rate and the average
increase in quantal amplitude (Fig. 3i). Further, in the presence of
CNQX, closed-loop optogenetic restoration of the firing rate did
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not attenuate AMPAergic upscaling (Fig. 7). In addition, our
stimulation paradigm effectively restored burst rate (Fig. 6c),
burst shape (Fig. 4d) and somatic calcium transients (Fig. 4e,f,
Supplementary Fig. 7, Supplementary Movie 1 (refs 26,37,38))
during AMPAergic blockade. Together, these results suggest that
reductions in spiking or spike-dependent calcium influx are not
required to induce upscaling.

Previous studies have examined the consequences of altering
spiking in individual neurons while leaving synaptic transmission
onto these cells intact. In one set of studies, spiking was
chronically reduced in individual postsynaptic cells by over-
expression of an inwardly rectifying potassium channel (Kir2.1),
in vitro12 and in vivo17. The Kir2.1-expressing cells
homeostatically recovered spiking activity over a few days, but
did not express upscaling, indicating that reductions in spiking
alone did not trigger scaling. Our finding that reduced
neurotransmission triggers upscaling is consistent with these
studies as neurotransmission onto the Kir2.1-expressing cells was
unchanged. Another study optogenetically increased spiking in
individual neurons, which led to a reduction in mEPSC
amplitude, suggesting that increases in spiking alone could
trigger downscaling39. However, this could be explained by the
fact that there are differences in the molecular mechanisms
underlying upscaling and downscaling13,40–42. On the other hand,
a separate study puffed TTX locally on the somata of individual
neurons in order to block somatic spiking while leaving dendritic
neurotransmission intact, and observed accumulation of
AMPARs. This suggested that upscaling was directly engaged
by reduced somatic spiking16, which stands in contrast to the
results of our study. While it is unclear precisely why the findings
of this study differ from ours, several important differences exist
between the two studies, which might contribute to the
discrepancy. First, we blocked AMPAergic transmission while
maintaining spiking throughout the entire network, rather than
maintaining neurotransmission while blocking spiking in
individual neurons. Second, we assessed synaptic strength
functionally through mEPSC amplitude measurements after
24-h perturbations, rather than by GluA2 fluorescence during
the first few hours of the perturbation. Finally, we chronically and
continuously monitored spiking and bursting activity before and
during each perturbation. Therefore, it is possible that cultures
used in these two studies differ in terms of baseline activity levels
and firing patterns that were not monitored in the previous study,
which may have influenced subsequent plasticity.

While it is possible that upscaling is triggered by alterations in
cellular spiking other than firing rates (for example, temporal firing
patterns), we find this unlikely. In the aforementioned Kir2.1
transfection studies, dramatic reductions in the firing rate and
altered spike timing in individual cells did not trigger upscaling12,17.
Similarly, significant alterations in spiking occur during chronic
NMDA receptor blockade27,29 (Supplementary Fig. 2); however,
this perturbation does not appear to trigger upscaling11,20. Finally,
the activity evoked during our photostimulation experiments
mimicked spontaneous activity in terms of somatic calcium
transients and higher order characteristics of spiking
(Supplementary Figs 4–5,7, Supplementary Movie 1), suggesting
that cellular spiking patterns were preserved during closed-loop
control of network firing rate.

Rather than a spike-dependent model of scaling, our
photostimulation experiments support a model where reduced
AMPAR activation, independent of changes in spiking
activity, triggers upscaling. Further, our CTZ-based experiments
demonstrated that TTX-induced scaling is attenuated when
spontaneous AMPAergic currents are pharmacologically
enhanced. By separately manipulating spiking or AMPAergic
transmission throughout the network, we have demonstrated a

critical role for glutamatergic transmission, as opposed to spiking,
in the induction of upscaling.

While the most parsimonious explanation of the results might
be that reducing AMPAR activation at neuronal synapses triggers
upscaling, our experiments alter AMPAR activation throughout
the culture. Therefore, it is possible that the critical AMPARs are
on glia. Indeed, the capacity for glia to sense ambient glutamate
has been implicated in the upscaling process13. Our cultures have
a significant astrocytic population (Fig. 1a) that is well positioned
to monitor synaptic activity throughout the network.

Upscaling is characterized by a coordinated increase in the
strength of all synaptic inputs onto a neuron. In contrast, recent
work has identified a local form of homeostatic plasticity that
regulates the strength of individual synapses. In these studies,
neurotransmission was reduced in a subset of presynaptic inputs
through local application of a receptor antagonist20, presynaptic
overexpression of Kir2.1 (refs 21,22) or altering sensory
input in vivo23 (for reviews see refs 43–45)). Reducing neuro-
transmission at specific postsynaptic sites (leaving postsynaptic
spiking largely intact) resulted in compensatory strengthening of
only those synapses. Our finding that cell-wide upscaling is directly
triggered by reduced AMPAR activation, rather than reduced firing
rate, suggests that the this local compensatory plasticity may be
more closely related to cell-wide scaling than previously thought.
Specifically, both upscaling and local synaptic compensations are
engaged by altered synaptic transmission independent of changes in
spiking. Given this similarity, upscaling produced by chronic TTX
or CNQX treatment might be the result of bath application of the
drugs, which in turn reduce AMPAergic transmission at all
synapses and trigger local synaptic compensations throughout the
cell. Local strengthening of all synapses on a neuron would then
resemble a cell-wide increase in synaptic strength. If upscaling is a
cell-wide manifestation of a plasticity that acts to maintain synaptic
strength in a synapse-specific manner, then this would represent a
very different functional goal than homeostatic maintenance of
cellular firing rate.

The possibility that upscaling represents a synapse-specific
process raises questions about its relationship to Hebbian forms
of plasticity, which is also synapse-specific and widely believed to
underlie memory encoding and storage46. The cell-autonomous
model of synaptic scaling provides an elegant way to stabilize a
neuron’s activity levels without disrupting the relative synaptic
strengths established through competition-based Hebbian
plasticity18. Conversely, a synapse-specific model (where scaling
emerges when activity at all synapses is similarly disrupted)
suggests that information encoded by the relative weights of
individual synapses is vulnerable to interference from
homeostatic modifications. However, there may be substantial
benefits in the interactions of these seemingly antagonistic forms
of synaptic plasticity47.

Methods
Cell culture. Sterilized MEAs (Multichannel Systems, 60MEA200/30iR-Ti-pr)
and glass bottom dishes (GBDs; Mattek, P35G-1.5-10-C) were coated with poly-
ethyleneimine (Sigma, P-3143) and laminin (Sigma, L-2020). Neocortical hemi-
spheres were isolated from Sprague–Dawley rats on embryonic day 18 (E18), or
equivalent tissue was purchased from BrainBits, LLC (part number: cx). Tissue was
enzymatically dissociated using 20 U ml� 1 activated papain (Roche, 10108014001)
at 36.5 �C, mechanically dissociated by trituration, and stained to assess viability
using Trypan Blue (Invitrogen, 15250). The resulting cell suspension was diluted to
2,500 live cells � per ml, and 35,000 cells were plated as a 2-mm-diameter drop over
the centre of the grid of MEA electrodes or on the GBD culturing surface. Growth
medium was modified from Jimbo et al.48, and it contained: 90% high-glucose
DMEM, 10% horse serum, 0.5 mM GlutaMAX, 1 mM sodium pyruvate,
2.5 mg ml� 2 insulin (pH 7.2, 315 mOsm); no antibiotics or antimycotics were used.
The medium was fully exchanged at 1 day in vitro (DIV), and half the medium was
exchanged every 3 days thereafter. MEAs and GBDs were sealed with fluorinated
ethylene-propylene49 or polydimethylsiloxane50 membranes. Cultures were
maintained in an incubator regulated at 35 �C, 5% CO2 and 65% relative humidity.
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Further details of our culturing procedures are described in ref. 51. Sample size was
based on number of cultures (always greater than 3). All protocols were in
compliance with the National Research Council’s Guide for the care and use of
laboratory animals using a protocol approved by the Georgia Tech Institutional
Animal Care and Use Committee.

Pharmacology. Drugs were used in the following concentrations (in mM): TTX, 1;
CNQX, 40; bicuculline, 20; CTZ, 100; and APV, 50. CTZ was obtained from
ENZO. All other drugs were obtained from Sigma. The vehicle used to treat control
cultures was DMSO or water, depending on the solvent used to dilute drug in the
experimental group of comparison.

Transfections. AAV9-hSynapsin-ChR2(H134R)-eYFP was produced by the
University of Pennsylvania Vector Core using DNA from Dr. Karl Deisseroth. All
cultures used in ChR2 experiments, including controls, were transfected at 1 DIV.
The genomic titre was 1� 1013 c.f.u. �ml� 1, and 0.5 ml was added to 1 ml growth
medium at 1 DIV during the first medium exchange. Expression of the eYFP
reporter protein was verified during the first week in vitro using a confocal
microscope (Zeiss LSM 700, Fig. 4a).

MEA recordings. Experiments began at 8–12 DIVs. MEA recordings were per-
formed in the standard growth medium in a cell culture incubator (35 �C,
5% CO2, 65% relative humidity). Voltages recorded through microelectrodes were
amplified and bandpass-filtered from 1 Hz to 5 kHz using a 60-channel analogue
amplifier (Multichannel Systems, MEA60-Up) and digitized at 25 kHz using the
Neurorighter acquisition system31,52. Voltage recordings were digitally filtered with
a third-order Butterworth bandpass from 200–3,000 Hz, and action potentials were
detected at threshold of ±5 times the root mean square noise. Offline analyses of
the recorded spike data was performed in MATLAB (The Mathworks). The pre-
drug period was defined as a 3-h segment preceding drug or vehicle application.
The treatment period was defined as the entire 24-h segment during drug or vehicle
application. After the treatment period, cultures were washed four times with
standard growth medium. Statistical significance for firing and burst rate data was
determined using a Kruskal–Wallis test followed by Wilcoxon rank-sum tests with
Bonferroni correction for multiple comparisons.

Whole-cell recordings. mEPSCs were recorded from pyramidal-shaped cells in a
continuous perfusion of artificial cerebrospinal fluid (aCSF) containing (in mM):
126 NaCl, 3 KCl, 2 CaCl2, 1.5 MgSO4, 1 NaH2PO4, 25 NaHCO3 and 25 D-glucose,
and saturated with 95% O2 and 5% CO2 (pH 7.4). To isolate AMPAergic mEPSCs,
the external solution was supplemented with 1 mM TTX and 20mM bicuculline.
The solution temperature was regulated at 35 �C using an inline heater (Warner
64-0102). Internal solution contained (in mM) the following: 100 K-gluconate,
30 KCl, 10 HEPES, 2 MgSO4, 0.5 EGTA and 3 ATP (pH 7.4). mEPSCs were recorded
using an EPC8 amplifier (HEKA). Pipette resistances ranged from 2 to 8 MO.
mEPSCs were analysed, blind to the treatment condition, using MiniAnalysis
(Synaptosoft) and mEPSCs with amplitudes less than 5 pA were excluded from
analysis. Statistical significance for mEPSC data was determined using a one-way
analysis of variance followed by t-tests with Bonferroni correction for multiple
comparisons. mEPSC amplitude distributions were compared using the Kolmogorov–
Smirnov test. mEPSC characteristics are summarized in Supplementary Fig. 3.

Optical stimulation. To deliver optical stimuli, a custom current source (http://
www.open-ephys.org/cyclops/) was used to drive a blue LED (465±11 nm full-
width at half-maximum; LEDEngin, LZ4-00B200). The LED was butt-coupled to a
randomized fibre bundle (Schott AG, A21045), which fed light to a custom Köhler
illumination train mounted beneath the MEA amplifier. The average network firing
rate was calculated every dt¼ 10 ms according to

f ¼ ar t½ � þ 1� að Þf t� dt½ �

where

a � 1� e� dt=t

defines a first-order averaging filter with a t¼ 2.5-s time constant and f[t]¼
(number of detected spikes in time window dt)/dt is the instantaneous firing at
time t. The target rate, f*, was defined as f[t] over a 3-h period before CNQX
application. Five minutes following the application of CNQX to the culturing
medium, an error signal was generated between the target and measured firing rate
according to

ef t½ � ¼ f � � f t½ �:

Finally, an on–off controller was used to determine stimulus application
according to

if
Xt

k¼0

ef ½k�40; apply 10 ms light pulse:

Each stimulus pulse resulted in a uniformly distributed B10-mW mm� 2 light in
the plane of the culture. The rise and fall times of each LED pulse were B10ms.

Calcium imaging. Cells were loaded with the red-shifted calcium indicator,
Rhod-3 AM (Life Technologies R10145) and incubated according to the manu-
facturer’s instructions, and then rinsed with aCSF. Cytosolic Rhod-3 was imaged
on an upright light microscope (Zeiss Axioscope 2) using illumination from a white
LED filtered at 540–565 nm (Chroma T565lpxr) and focused through the objective
on the specimen. Emitted light was filtered at 570–650 nm (Chroma 41007a) and
collected using an EMCCD camera (Photometrics QuantEM:512SC), and images
were acquired using Micro-Manager53. Blue light pulses (10 ms, 10.1 mW mm� 2)
were delivered using a current controller (Prizmatix TLCC-01) to drive a blue LED,
filtered at 460–500 nm (Omega 540DRLP) and focused through the objective on
the specimen. Concurrent MEA recording using MC Rack (Multichannel Systems)
was performed during all imaging sessions. Recording, imaging and stimulation
were synced using MC Stim (Multichannel Systems).

Optical analysis was carried out in order to compare calcium transients during
bursts before and after addition of CNQX. Ten regions of interest (ROIs) were
drawn around somatic-shaped regions that showed a clear increase in fluorescence
during a spontaneous burst and overlapped large neuronal cell bodies, as
determined through hSynapsin-driven eYFP labelling. ROIs were used to measure
the raw fluorescence, which was then converted to nF/F (raw fluorescence minus a
30-frame average taken before the burst divided by 30-frame average before the
burst). For each ROI, nF/F was measured and compared during spontaneous
bursts before the CNQX application and during optically evoked bursts in the
presence of CNQX. Averages of four to six bursts for each condition were
compared using a Wilcoxon rank-sum text. Calcium imaging analysis for CTZ
experiments was carried out similarly. Ten ROIs were drawn on the basis of
calcium transients of spontaneous bursts and nF/F was measured for 5 min in
control conditions, and in the presence of TTX, or TTX and CTZ.

Immunocytochemistry. Cultures were rinsed with PBS and fixed in 4% paraf-
ormaldehyde (pH, 7.2) for 20 min. Fixed cultures were rinsed with PBS and
blocked/permeabilized with 10% goat serum and 0.1% Triton-X for 1 h. Cultures
were incubated with the primary antibody in 10% goat serum and 0.05% Triton-X
for 24 h at 4 �C. Cultures were then incubated with a secondary antibody for 1.5 h.
Imaging was performed on a confocal microscope (Zeiss LSM 700). Unless
otherwise noted, all procedures were performed at room temperature and cultures
were rinsed several times with PBS between steps. Antibody concentrations were
as follows: rabbit anti-GFAP (Accurate Chemical, BMDV2023), 1:200; mouse
anti-MAP2 (Millipore), 1:300; Alexafluor 594 anti-rabbit (Life Technologies),
1:200; and Alexafluor 488 anti-mouse (Life Technologies), 1:200.
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