Microelectrode array recordings of cultured cortical networks help identify activity perturbations that trigger homeostatic synaptic plasticity

Ming-fai Fong^{1,2}, Jonathan P. Newman², Marc P. Powell², Steve M. Potter², Peter Wenner¹

¹ Department of Physiology, Emory University School of Medicine, Atlanta, GA. ¹ Laboratory for Neuroengineering, Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA.

Homeostatic plasticity provides a set of mechanisms for maintaining appropriate levels of spiking activity in developing neural circuits. When activity in cultured cortical networks was blocked for 2 days using TTX, there was a compensatory multiplicative increase in the amplitude of AMPAergic mEPSCs (synaptic scaling) [1]. Identical results have been observed when AMPAergic transmission was blocked for 2 days using CNQX. While changes in synaptic strength have been well-described in these experiments, network spiking activity is rarely tested. In this study, we continuously monitored network spiking activity in cortical cultures during a 2-day TTX or CNQX treatment using microelectrode arrays (MEAs). Drug treatments were followed by whole cell recordings of mEPSCs to assess synaptic strength. We found that TTX abolished all spiking activity. CNQX initially eliminated synchronous network-wide discharges or "bursts", but had little effect on tonic spiking activity outside of bursts. Surprisingly, bursting recovered in all CNQX-treated cultures. Both treatments were accompanied by upward synaptic scaling; however, the reduction in MEA-recorded activity and the degree to which synaptic strength increased was poorly correlated.

Methods

Dissociated cortical cultures

Primary cultures of neurons and glia were derived from E18 rat cortex and grown on polyethyleneimine- and laminin-coated MEAs. Serum-containing growth medium was changed every three days. Experiments were conducted during the second week in vitro.

MEA acquisition system

MEAs allow for continuous recording of extracellular action potentials from a grid of 59 microelectrodes embedded in a neuronal culture. All recordings were performed inside of an incubator in standard growth medium. Neurorighter (www.sites.google.com/site/neurorighter/) was used to acquire MEA data and detect spikes online. Spikes were sorted online and tracked throughout the recording. Spikes were re-sorted offline to validate waveforms and remove artifacts.

Firing rate and burst analysis

Network firing rate was computed by taking a time histogram of all spikes across the MEA using 1-second or 1-hour bins. A defining characteristic of dissociated cortical cultures is the development of synchronous spiking across the network, or "bursting" [2]. Spikes were classified as occuring during a burst or during an interburst interval (IBI) based on interspike interval taken across all electrodes.

Measuring AMPAergic synaptic strength

mEPSCs were recorded from pyramidal shaped cells using a HEKA EPC8 amplifier in the presence of 1µM TTX. In several experiments, 20µM bicuculline was added to eliminate GABAergic mIPSCs. We used this approach to pharmacologically isolate AMPAergic mEPSCs. We also used decay kinetics of AMPAergic mEPSCs ($\tau \leq 6$ ms) to eliminate GABAergic mIPSCs for recordings conducted in TTX alone.

Figure 3: Whole-cell recordings for measuring AMPAergic synaptic strength. (A) A sample current trace showing mEPSCs recorded using a holding potential of -70mV. (B) Pyramidal shaped cell in cultured cortical network on MEA. (C) Histogram of decay time constants for glutamateric and GABAergic mEPSCs recorded in the presence of TTX. (D) Histogram of decay time constants for glutamateric mEPSCs in the presence of TTX and bicuculline.

dividual cells

Figure 1. MEAs monitor network and individual **neuron activity.** (A) Cortical culture growing on an MEA. (B) Voltage traces recorded on each electrode using the Neurorighter acquisition system. (C) Phase-contrast micrograph of neurons near an MEA electrode. (D) Sorted pike waveforms recorded on single MEA electrode. This electrode shows 3 sorted units, presumably from three in-

analysis. (A) Spike rastergram from a bursting culture. (B) Same as A but with colors distinguishing spikes occurring in bursts (red) versus the IBI (blue). (C) Array-wide firing rate histogram for 1-second bins, showing relative contributions of bursts versus IBIs to overall firing rate. Overall firing rate is dominated by spikes occuring in

Figure 2. Firing rate

recorded in TTX+bicuculline

0 2 4 6 8 10 12 14 16 18 20 22 24 mEPSC decay time constant (ms)

LABORATORY FOR

NeuroRighter | Real-time

Emory GDBBS DSAC Symposium January 2012 Atlanta, GA

CNQX-treated age-matched vehicle-treated control

Figure 5: Blocking AMPAergic transmission using CNQX does not abolish spiking activity. (A) Array-wide firing rate for cultures treated with CNQX were computed using 1-second bins. Immediately after the drug was added, bursting activity was eliminated. After an hour, bursting resumed at a reduced frequency. Burst frequency steadily increased over the two-day treatment period. (B) Array-wide firing rate for cultures treated with TTX were computed using 1-hour bins. The relative contribution of spikes contained within bursts versus IBIs are shown in red and blue, respectively Before drug treatment, the overall firing rate was dominated by bursts. After the drug was added, there was a reduction and recovery of spiking characterized by a reduction and recovery of bursting Meanwhile, CNQX had little effect on tonic spiking that occurredoutside of bursts. (C) Orange dots indicate mEPSC amplitudes for 8 cells recorded from the CNQX-treated culture whose activity is shown in A and B. CNQX-treated cells showed a 135% increase in mEPSC amplitude compared to cells in a vehicle-treated age-matched sister control.

was added, all activity (during both bursts and IBIs) was abolished. (C) Purple dots indicate mEPS

amplitudes for 3 cells recorded from the TTX-treated culture whose activity is shown in A and B.

Figure 6: Chronic blockade of spiking or AMPAergic transmission leads homeostatic increases in network-wide activity after the drug is washed. (A) Unit-normalized array-wide firing rate for a vehicle-treated control culture. A moderate developmental increase in firing rate can be observed over the 100-hour recording. (B) Unit-normalized array-wide firing rate for an age-matched sister cul ture treated with TTX for 48 hours. Spiking activity is completely abolished. After the wash, burst frequency is elevated over pre-drug conditions. (C) Unit-normalized array-wide firing rate for an age-matched sister culture treated with CNQX for 48 hours. Spiking activity is initially reduced, but gradually recovers. After the wash, burst frequency is elevated over pre-drug conditions.

Figure 7: Chronic blockade of spiking or AMPAergic transmission leads homeostatic increases in individual cell activity after the drug is washed. (A) Firing rate for each unit in a vehicle-treated control culture (same recording as Fig. 6A). A moderate developmental increase in individual unit firing rate can be observed over the 100-hour recording. (B) Firing rate of individual units in an age-matched sister culture treated with TTX for 48 hours (same recording as Fig. 6B). After the wash, several units show a dramatic increase in firing rate compared to pre-drug conditions and the vehicletreated culture. (C) Firing rate of individual units in an age-matched sister culture treated with CNQX for 48-hours (same recording as Fig. 6C). Initially most units experience a dramatic decrease in firing rate, but each one recovers partial. After the wash, most units show a dramatic increase in firing rate compared to pre-drug conditions and the TTX- and vehicle-treated cultures.

• MEAs are useful tools for studying homeostatic plasticity in vitro. MEAs provide a means to continuously monitor spiking during pharmacological perturbations and to follow the homeostatic recovery in cultured

• Reductions in spiking activity alone cannot predict the level of synaptic scaling. TTX blocks spiking activity much more effectively than CNQX, and CNQX has variable efficacy in reducing spiking activity in different cultures. This suggests that neurons may be monitoring more features of network activity than spiking levels alone, or that reduction in spiking below a threshold is sufficient to trigger complete scaling.

• Synaptic scaling is likely triggered by reducing synchronous network-wide spiking. While TTX reduces spiking in both bursts and IBIs, CNQX primarily reduces spiking that occur in bursts. Both drugs elicit compensatory increases in mEPSC amplitude. Based on these findings, and the observation that approximately 90% of spikes occur in bursts, it is likely that a reduction in bursting activity triggers synaptic scaling.

[1] Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons.

[2] Wagenaar DA, Pine J, Potter SM (2006) An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC

Acknowledgments: We thank J.T. Shoemaker for assistance with tissue harvests. This work was supported by the NIH NINDS Grant R01NS065992 to P.W., NSF EFRI COPN Grant 0836017 to S.M.P., NSF GRFP Fellowship 09-603 to M.F., NSF GRFP Fellowship 08-593 to J.P.N., NSF IGERT Fellowship DGE-0333411 to M.F. and J.P.N., Emory NI SPINR Fellowship to M.F.