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Upward synaptic scaling (upscaling) is form a homeostatic plasticity that manifests as a cell-wide strength- RESUltS
ening of excitatory synapses following a chronic disturbance to neural activity. Chronic reductions in firing
rate are thought to directly trigger upscaling. Recent work, however, has suggested that reduced neurotrans-

mission can trigger compensatory synaptic strengthening. In order to separate the importance of spiking and Closed-loop optical stimulation restores spiking during AMPAergic blockade Cyclothiazide increase quantal AMPAergic currents during spiking blockade

AMPAergic transmission In triggering upscaling, we independently manipulated these two variables through . \4 |

a combination of multisite electrophysiology, optogenetic feedback control, and pharmacology. First, we T - Stﬁn%ﬁ:;’ji"egms

used micro-electrode array (MEA) recordings to continuously monitor spiking activity in cultured cortical ST - ' i . | B2 o S o C 5 s f drug added CL
networks. We then pharmacologically blocked AMPAergic transmission, while restoring normal spiking using <$z ks ] W f ________________ R e ¥ s2Z 1o -
closed-loop optogenetic stimulation delivered based on MEA-recorded activity. We found that upscaling was = o - J | | /""W‘" % e §1o. SE9 s

still observed, even when normal firing rates were restored. Next, we blocked spiking activity while partially = ——r—r— acute TTX+bic gl_ = % 51 h g?_- 01 N

restoring transmission using an AMPA receptor modulator. We found that changes in AMPA receptor acti- - - A 0 . # Tppm——— e E o > =3 Pl-mx |\

vation were critical to the upscaling process. We conclude that cell-wide multiplicative upscaling is directly | \ acute TTX+bic+CTZ " = 0N pTmeTZz e e e e

triggered by reduced AMPAergic transmission, and not reduced spiking. These results raise questions about
the functional role of synaptic scaling, and have implications for learning, memory, and neural injury:.
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4 hours CNQX 12 hours CNQX 23 hours CNQX Figure 7: Quantal AMPAergic currents augmented during TTX treatment. (A) Top, whole-cell recording of typical synaptic currents, with shaded box zooming in on smaller
events. Middle and bottom, sample AMPAergic mEPSCs before (middle) and during (bottom) acute CTZ treatment. (B) Average mEPSC amplitude and frequency of AMPAergic mEPSCs

during acute CTZ treatment. Significance differences denoted by *p<10?, **p<103. Error bars, s.e.m. (C) Average MEA-wide firing rate over time before and during the treatment period.
Bin size, 3 h. Error bars, s.d.
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Abbreviations: MEA microelectrode array | TTX tetrodotoxin | CNQX 6-cyano-7-nitroquinoxaline-2,3-dione | bic bicuculline | CTZ
cyclothiazide | ChR2 channelrhodopsin-2 | mEPSC miniature excitatory postsynaptic current
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Figure 4: Spiking restored during CNQX treatment. Spontaneous MEA-wide firing rate is monitored for several hours. CNQX is added (time=0 hours), and closed-loop optical stim-
ulation begins 5 minutes later. The controller’s target firing rate is set to the average spontaneous rate during the 3-hour period before CNQX treatment. Top, MEA-wide firing rate over
time before and during the treatment period. Bin size, 1 s. Bottom, rastergrams showing 15-min segments of spiking data on all electrodes at various time points during recording.
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upward synaptic scaling is  a form of homeostatic plasticity that is thought to be triggered by chronic reductions in spiking activity , and manifests as cell-wide strengthening of excitatory synapses.
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Our results challenge the prevailing belief that the function of upscaling is to homeostatically maintain firing rate, but instead suggests that scaling functions to regulate excitatory synaptic transmission
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Because synapse-specific compensations have been described  following local reductions in transmission (refs), it is possible that cell-wide synaptic scaling represents many local synaptic compensations occurring at all synapses throughout the cell.
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