Reductions in AMPA receptor activation, rather than spiking, trigger upward synaptic scaling D17 / 704.13
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Chronic reductions in firing rate lead to upward synaptic scaling (upscaling), a form of homeostatic plasticity RESUltS
that 1s expressed as a cell-wide strengthening of excitatory synapses. Recent work, however, has suggested
that reduced neurotransmission can also directly trigger compensatory synaptic strengthening. In order to
separate the importance of spiking and AMPAergic transmission in triggering upscaling, we independently Closed-loop optical stimulation restores spiking during AMPAergic blockade Cyclothiazide increases quantal AMPAergic currents during spiking blockade

manipulated these two variables through a combination of multisite electrophysiology, optogenetic feed-
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found that changes in AMPA receptor activation were critical to the upscaling process. We conclude that | H————— [ & L £ L, = i o\o 251 — 11X .
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frequency of AMPAergic mEPSCs during acute CTZ treatment. Significance differences denoted by *p<102, **p<103. Error bars, s.e.m. (C) Average MEA-wide firing rate
over time before and during the treatment period. Bin size, 3 h. Error bars, s.d.
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Figure 4: Spiking restored during CNQX treatment. Spontaneous MEA-wide firing rate is monitored for several hours. CNQX is added (time=0 hours), and closed-
loop optical stimulation begins 5 minutes later. The controller’s target firing rate is set to the average spontaneous rate during the 3-hour period before CNQX treatment.
Top, MEA-wide firing rate over time before and during the treatment period. Bin size, 1 s. Bottom, rastergrams showing 15-min segments of spiking data on all electrodes

at various time points during recording.
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