
• Reductions in AMPAergic transmission are sufficient to trigger upward 
synaptic scaling even when spiking and bursting activity are normal.

• Reduced AMPA receptor activation is necessary for both TTX- and 
CNQX-induced synaptic scaling.

• Upward synaptic scaling acts to regulate AMPAergic transmission rather 
than neuronal firing rates.

• Optogenetic feedback control of neuronal firing is a powerful tool for separating spiking from causally-
related variables (e.g. neurotransmission)

 Reductions in AMPA receptor activation, rather than spiking, trigger upward synaptic scaling
Ming-fai Fong1,2, Jonathan P. Newman2, Steve M. Potter2, Peter Wenner1

Upward synaptic scaling (upscaling) is form a homeostatic plasticity that manifests as a cell-wide strength-
ening of excitatory synapses following a chronic disturbance to neural activity.  Chronic reductions in firing 
rate are thought to directly trigger upscaling. Recent work, however, has suggested that reduced neurotrans-
mission can trigger compensatory synaptic strengthening. In order to separate the importance of spiking and 
AMPAergic transmission in triggering upscaling, we independently manipulated these two variables through 
a combination of multisite electrophysiology, optogenetic feedback control, and pharmacology. First, we 
used micro-electrode array (MEA) recordings to continuously monitor spiking activity in cultured cortical 
networks.  We then pharmacologically blocked AMPAergic transmission, while restoring normal spiking using 
closed-loop optogenetic stimulation delivered based on MEA-recorded activity. We found that upscaling was 
still observed, even when normal firing rates were restored. Next, we blocked spiking activity while partially 
restoring transmission using an AMPA receptor modulator.  We found that changes in AMPA receptor acti-
vation were critical to the upscaling process. We conclude that cell-wide multiplicative upscaling is directly 
triggered by reduced AMPAergic transmission, and not reduced spiking. These results raise questions about 
the functional role of synaptic scaling, and have implications for learning, memory, and neural injury.
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DGE-0333411 to M.F. and J.P.N., and Emory Neuroscience Initiative SPINR to M.F.Figure 2: Schematic of closed-loop stimulation system. Spiking activity is recorded through the MEA. When the error between the target and measured MEA-wide firing rate becomes 

positive, a 10-ms current pulse is delivered to a blue LED. A Köhler illuminator is used to produce uniformly bright illumination at the cell layer.

Closed-loop optical stimulation restores spiking during AMPAergic blockade

Reductions in spiking are not required for CNQX-induced synaptic scaling

Figure 10: Cyclothiazide attenuates TTX-induced scaling.  (A) Left, sample mEPSCs recorded from cells treated with vehicle, TTX, or TTX+CTZ. Right, average waveform of all 
mEPSCs recorded for each treatment condition. (B) Mean mEPSC amplitude for the 3 treatment conditions.  Non-significant differences denoted by n.s. Significant differences denoted by 
*p<10-2 and **p<10-5.  Error bars, s.e.m. (C) Cumulative distribution of mEPSC amplitudes following the 3 treatment conditions.  The distribution of mEPSC amplitudes is significantly 
different between the TTX and TTX+CTZ conditions (p<10-6). (D) Cumulative distribution of multiplicatively scaled mEPSC distributions following TTX or TTX+CTZ treatment. Scaled 
distributions match the control distribution (TTX, p>0.7; TTX+CTZ, p>0.5).  (E) Ranked mEPSC amplitudes for the 3 treatment conditions plotted against one another.  Dotted line de-
notes line of identity.

• primary cultures from E18 rat neocortex grown on planar MEAs [2,3]
• transfected with AAV9-hSynapsin-ChR2(H134R)-eYFP at 1 DIV

Closed-loop optical stimulation

Cell culture

Whole-cell recordings

Treatment conditions
• 40 μM CNQX used to block AMPAergic transmission
• 40 μM CNQX + closed-loop optical stimulation to restore firing rate
• 1 μM TTX used to block spiking
• 1 μM TTX + 20 μM CTZ used to block spiking while enhancing 

AMPAergic currents

Multisite electrophysiology
• continuous recording of extracellular spikes from cultures during second 

week in vitro
• Neurorighter real-time electrophysiology platform used for multichan-

nel data acquisition and closed-loop control of LED current driver [4]

• blue LED (465 nm) driven by custom current source
• average firing rate calculated every 10 ms
• target firing rate set to average firing rate during 3-hour 

epoch prior to CNQX treatment
• 10-ms pulse delivered at 10.1 mW/mm2 when integrated error 

between target and measured firing rate became positive

• recorded mEPSCs from pyramidal shaped cells
• 1 μM TTX + 20 μM bicuculline to isolate AMPAergic events
• analysis performed blin to treatment condition
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Figure 1: Microelectrode arrays. (A) Dissociated 
cortical culture on 59-channel MEA. (B) Confocal mi-
crograph of culture expressing ChR2-eYFP. (C) Top, 
rastergram of spike times during a network-wide burst.  
Middle, rastergram during 3 bursts. Bottom, time his-
togram of spikes showing the MEA-wide firing rate.

50 μm
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Figure 5: Bursts evoked during CNQX treatment resemble spontaneous 
bursts. Top, voltage recording on a single microelectrode during a spontaneous 
burst (left) or an optically-evoked burst during CNQX treatment (right). Middle, 
rastergram of spikes detected on all electrodes during bursts shown above. Bottom, 
average burst shape during 6-hour period before CNQX (left), or during 24-hour 
CNQX treatment with closed-loop optical stimulation (right). Shading, s.d.

Figure 4: Spiking restored during CNQX treatment. Spontaneous MEA-wide firing rate is monitored for several hours.  CNQX is added (time=0 hours), and closed-loop optical stim-
ulation begins 5 minutes later.  The controller’s target firing rate is set to the average spontaneous rate during the 3-hour period before CNQX treatment.  Top, MEA-wide firing rate over 
time before and during the treatment period.  Bin size, 1 s.  Bottom, rastergrams showing 15-min segments of spiking data on all electrodes at various time points during recording.
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Figure 6: Optical stimulation 
reliably restores normal spiking 
and bursting rates. (A) Average 
MEA-wide firing rate over time be-
fore and during the treatment peri-
od.  Bin size, 3 h. Error bars, s.d. 
(B) Average MEA-wide firing rate 
and burst rate during the treatment 
period. Significance differences de-
noted by *p<10-3, **p<10-4. Error 
bars, s.e.m.
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Reduced AMPA receptor activation is required for TTX-induced synaptic scaling

Figure 9: Quantal AMPAergic currents augmented during TTX treatment. (A) Top, whole-cell recording of typical synaptic currents, with shaded box zooming in on smaller 
events.  Middle and bottom, sample AMPAergic mEPSCs before (middle) and during (bottom) acute CTZ treatment. (B) Average mEPSC amplitude and frequency of AMPAergic mEPSCs 
during acute CTZ treatment. Significance differences denoted by *p<10-2, **p<10-3. Error bars, s.e.m. (C) Average MEA-wide firing rate over time before and during the treatment period.  
Bin size, 3 h. Error bars, s.d.

Cyclothiazide increase quantal AMPAergic currents during spiking blockade

Figure 7: CNQX-induced scaling persists with spiking is restored.  (A) Left, sample mEPSCs recorded from cells treated with vehicle, CNQX, or CNQX and closed-loop photostimu-
lation. Right, average waveform of all mEPSCs recorded for each treatment condition. (B) Mean mEPSC amplitude for the 3 treatment conditions.  Non-significant differences denoted by n.s. 
Significant differences denoted by **p<10-5.  Error bars, s.e.m. (C) Cumulative distribution of mEPSC amplitudes following the 3 treatment conditions.  The two CNQX-treated distributions 
(with and without photostimulation) are statistically indistinguishable (p>0.9). (D) Cumulative distribution of multiplicatively scaled mEPSC distributions following CNQX treatment (with 
and without photostimulation).  Scaled distributions match the control distribution (p>0.9 for both).  (E) Ranked mEPSC amplitudes for the three treatment conditions plotted against one 
another.  Dotted line denotes line of identity.

Background
Upward synaptic scaling Triggers for scaling

Figure 1: Typical experimental assessment of synaptic scaling.  Cultured neurons chronically treated with TTX or 
CNQX show increased mEPSC amplitude, and this increase is multiplicative across the entire mEPSC distribution [1].
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Abbreviations: MEA  microelectrode array  |  TTX  tetrodotoxin  |  CNQX  6-cyano-7-nitroquinoxaline-2,3-dione  |  bic  bicuculline  |  CTZ 
cyclothiazide  |  ChR2  channelrhodopsin-2  |  mEPSC  miniature excitatory postsynaptic current
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